
Porting Source to Linux

Valve’s Lessons Learned

Overview

 Who is this talk for?

 Why port?

 Windows->Linux

 Linux Tools

 Direct3D->OpenGL

Why port?

Why port?

 Linux is open

 Linux (for gaming) is

growing, and quickly

 Stepping stone to mobile

 Performance

 Steam for Linux
% December January February

Windows 94.79 94.56 94.09

Mac 3.71 3.56 3.07

Linux 0.79 1.12 2.01

0%

1%

10%

100%

Nov Dec Jan Feb

Linux Mac Windows

Why port? – cont’d

 GL exposes functionality by hardware

capability—not OS.

 China tends to have equivalent GPUs, but overwhelmingly

still runs XP

— OpenGL can allow DX10/DX11 (and beyond) features for all of

those users

Why port? – cont’d

 Specifications are public.

 GL is owned by committee, membership

is available to anyone with interest (and some, but not a

lot, of $).

 GL can be extended quickly, starting with a single vendor.

 GL is extremely powerful

Windows->Linux

Windowing issues

 Consider SDL!

 Handles all cross-platform windowing issues, including on

mobile OSes.

 Tight C implementation—everything you need, nothing you

don’t.

 Used for all Valve ports, and Linux Steam
http://www.libsdl.org/

http://www.libsdl.org/
http://www.libsdl.org/

Filesystem issues

 Linux filesystems are case-sensitive

 Windows is not

 Not a big issue for deployment (because everyone ships

packs of some sort)

 But an issue during development, with loose files

 Solution 1: Slam all assets to lower case, including

directories, then tolower all file lookups (only adjust below

root)

 Solution 2: Build file cache, look for similarly named files

Other issues

 Bad Defines

— E.g. Assuming that LINUX meant DEDICATED_SERVER

 Locale issues

— locale can break printf/scanf round-tripping

— Solution: Set locale to en_US.utf8, handle internationalization

internally

— One problem: Not everyone has en_US.utf8—so pop up a warning in

that case.

More Other Issues

 Font

— Consider freetype and fontconfig

— Still work determining how to translate font sizes to linux

 RDTSC (use clock_gettime(CLOCK_MONOTONIC) instead)

 Raw Mouse input

— Great, but some window managers also grab the keyboard

— This breaks alt-tab. Grr.

 Multi-monitor is less polished than Windows

— SDL mostly handles this for you

Linux Tools

Steam Linux Runtime (and SDK)

 Runtime provides binary compatibility across many Linux

distros for end users

 SDK has everything you’ll need to target the runtime in one

convenient set of packages

 Debug versions available, too

— For both developers and end users

 http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz

 https://github.com/ValveSoftware/steam-runtime

http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
http://media.steampowered.com/client/runtime/steam-runtime-sdk_latest.tar.xz
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime
https://github.com/ValveSoftware/steam-runtime

Tools – CPU Compilation/Debug

 Compilation / Debug

— gcc – compilation

— gdb – debugging from 1970

— cgdb – debugging from 2000

— ldd – dumpbin for linux

— nm – for symbol information

— objdump – disassembler / binary details

— readelf – more details about binaries

— make – no, really

 We’ll talk about GPU Debug tools later

Tools – CPU Perf analysis

 perf – free sampling profiler

 vtune – Intel’s tool works on Linux, too!

 Telemetry – You’re using this already, right?

 Again, we’ll talk about GPU perf tools later

Telemetry

 Telemetry is a performance visualization system on steroids,

created by RAD Game Tools.

 Very low overhead (so you can leave it on all through

development)

 Quickly identify long frames

 Then dig into guts of that

frame

Telemetry Details

Direct3D -> OpenGL

Which GL should you support?

 DX9 ≈ OpenGL 2

— Shaders

 DX10 ≈ OpenGL 3

— Streamlined API

— Geometry Shaders

 DX11 ≈ OpenGL 4

— Tessellation and Compute

Direct3D Support

D3D11

D3D10

D3D9 (and

below)

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

OpenGL Support

D3D10

D3D9

D3D11 GPU / D3D11 Capable OS

D3D10 GPU / D3D10 Capable OS

D3D10 GPU / D3D9 Capable OS

D3D9 (or below) GPU / All OSes

Sep 2011 Feb 2013

D3D11

togl

 “to GL”

 A D3D9/10/11 implementation using

OpenGL

 In application, using a DLL.

 Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

Source Engine

Matsys Shaderlib ShaderAPI

Direct3D

GPU

togl

 “to GL”

 A D3D9/10/11 implementation using

OpenGL

 In application, using a DLL.

 Engine code is overwhelmingly

(99.9%) unaware of which API is

being used—even rendering.

 Perf was a concern, but not a problem—this stack beats the

shorter stack by ~20% in apples:apples testing.

Source Engine

Matsys Shaderlib ShaderAPI

“CDirect3D9” (togl)

OpenGL

GPU

togl: Major pieces

 Textures, VBs, IBs

 Device Creation

— D3DCAPS9 (yuck!)

 Shaders

— togl handles this, too!

GL / D3D differences

 GL has thread local data

— A thread can have at most one Context current

— A Context can be current on at most one thread

— Calls into the GL from a thread that has no current Context are

specified to “have no effect”

— MakeCurrent affects relationship between current thread and a

Context.

Context Thread Context Thread

Thread

Thread

Context Thread

Context

Context

GL / D3D differences

 GL is C based, objects referenced by handle

— Many functions don’t take a handle at all, act on currently

selected object

— Handle is usually a GLuint.

 GL supports extensions

 GL is chatty, but shockingly efficient.

— Do not judge a piece of code by the number of function calls.

— Profile, profile, profile!

 GL doesn’t suffer lost devices

GL extensions

 NV|AMD|APPLE extensions are vendor specific (but may still be supported
cross-vendor)

— Ex: NV_bindless_texture

 EXT are multi-vendor specs

— Ex: EXT_separate_shader_objects

 ARB are ARB-approved

— Ex: ARB_multitexture

 Core extensions

— A core feature from a later GL version exposed as an extension to an earlier GL
version.

 Platform extensions (WGL|GLX|AGL|EGL)

 Consider GLEW or similar to wrangle extensions

 http://www.opengl.org/wiki/OpenGL_Extension

http://www.opengl.org/wiki/OpenGL_Extension

GL tricks

 When googling for GL functions, enums, etc, search with

and without the leading gl or GL_

 Reading specs will make you more powerful than you can

possibly imagine

 Don’t like where GL is heading? Join Khronos Group and

shape your destiny.

GL objects

 GL has many objects: textures, buffers, FBOs, etc.

 Current object reference unit is selected using a selector,

then the object is bound.

 Modifications then apply to the currently bound object.

 Most object types have a default object 0.

GL Object Model (cont’d)

// Select texture unit 3.
glActiveTexture(GL_TEXTURE0 + 3);

// bind texture object 7, which is a 2D texture.
glBindTexture(GL_TEXTURE_2D, 7);

// Texture object 7 will now use nearest filtering for
// minification.
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Core vs Compatibility

 Some IHVs assert Core will be faster

 No actual driver implementations have demonstrated this

 Tools starting with Core, but will add Compat features as

needed.

 Some extensions / behaviors are outlawed by Core.

 Recommendation: Use what you need.

Useful extensions

 EXT_direct_state_access

 EXT_swap_interval (and EXT_swap_control_tear)

 ARB_debug_output

 ARB_texture_storage

 ARB_sampler_objects

EXT_direct_state_access

 Common functions take an object name directly, no binding

needed for manipulation.

 Code is easier to read, less switching needed.

 More similar to D3D usage patterns
 http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

http://www.opengl.org/registry/specs/EXT/direct_state_access.txt

EXT_direct_state_access cont’d

GLint curTex;
glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
glBindTexture(GL_TEXTURE_2D, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glBindTexture(GL_TEXTURE_2D, curTex);

 Becomes

glTextureParameteriEXT(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

DSA when DSA is unavailable

 DSA is a driver-only extension—hardware is irrelevant.

 Write client code that assumes DSA

 Provide your own DSA function(s) when DSA is unavailable

 When resolving functions, use a pointer to your function if

extension is unavailable.

void myTextureParameteriEXT(GLuint texture, GLenum target,
 GLenum pname, GLint param)
{
 GLint curTex;
 glGetIntegeriv(GL_TEXTURE_BINDING_2D, &curTex);
 glBindTexture(target, texture);
 glTexParameteri(target, pname, param);
 glBindTexture(target, curTex);
}

EXT_swap_interval

 Vsync, but can be changed dynamically at any time.

 Actually a WGL/GLX extension.

wglSwapInterval(1); // Enable VSYNC

wglSwapInterval(0); // Disable VSYNC

 http://www.opengl.org/wiki/Swap_Interval

 http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt

 http://www.opengl.org/registry/specs/EXT/swap_control.txt

http://www.opengl.org/wiki/Swap_Interval
http://www.opengl.org/registry/specs/EXT/wgl_swap_control.txt
http://www.opengl.org/registry/specs/EXT/swap_control.txt

EXT_swap_control_tear

 XBox-style Swap-tear for the PC.

— Requested by John Carmack.

 First driver support a few weeks later

 All vendors supported within a few months

 wglSwapIntervalEXT(-1); // Try to vsync, but tear if late!

 http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt

 http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

http://www.opengl.org/registry/specs/EXT/wgl_swap_control_tear.txt
http://www.opengl.org/registry/specs/EXT/glx_swap_control_tear.txt

ARB_debug_output

 You provide a callback when the driver detects an error—get fed
a message.

 When the driver is in single-
threaded mode, you can see
all the way back into your
own stack.

 Supports fine-grained message
control.

 And you can insert your own
messages in the error stream
from client code.

 Quality varies by vendor, but
getting better.

ARB_debug_output cont’d

// Our simple callback
void APIENTRY myErrorCallback(GLenum _source,
 GLenum _type, GLuint _id, GLenum _severity,
 GLsizei _length, const char* _message,
 void* _userParam)
{
 printf("%s\n", _message);
}

// First check for GL_ARB_debug_output, then...
glDebugMessageCallbackARB(myErrorCallback, NULL);
glEnable(GL_DEBUG_OUTPUT);

More Useful GL Extensions

 NVX_gpu_memory_info / GL_ATI_meminfo

— Get memory info about the underlying GPU

 GL_GREMEDY_string_marker

— D3DPERF-equivalent

 GL_ARB_vertex_array_bgra

— better matches UINT-expectations of D3D

 GL_APPLE_client_storage / GL_APPLE_texture_range

— Not for linux, but useful for Mac.

GL Pitfalls

 Several pitfalls along the way

— Functional

 Texture State

 Handedness

 Texture origin differences

 Pixel Center Convention (D3D9->GL only)

— Performance

 MakeCurrent issues

 Driver Serialization

 Vendor differences—be sure to test your code on multiple

vendors

Texture State

 By default, GL stores information about how to access a

texture in a header that is directly tied to the texture.

 This code doesn’t do what you want:

 Texture*

Sampler

Info
Image Data

* Not to scale

Texture State cont’d

glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

// Draw

ARB_sampler_objects

 With ARB_sampler_objects, textures can now be accessed

different ways through different units.

 Samplers take precedence over texture headers

 If sampler 0 is bound, the texture header will be read.

 No shader changes required
 http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

http://www.opengl.org/registry/specs/ARB/sampler_objects.txt

Using sampler objects

Gluint samplers[2];
glGenSamplers(2, samplers);
glSamplerParameteri(samplers[0], GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glSamplerParameteri(samplers[1], GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);

glBindSampler(0, samplers[0]);
glBindSampler(1, samplers[1]);
glBindMultiTextureEXT(GL_TEXTURE0 + 0, 7);
glBindMultiTextureEXT(GL_TEXTURE0 + 1, 7);
// Draw

Other GL/D3D differences (cont’d)

 Handedness

— D3D is left-handed everywhere, GL is right-handed everywhere

— Texture origin is lower-left in GL (flip coordinates about v)

— Consider rendering upside-down, flipping at the end.

 GLSL uses column-major matrices by default

— Including when specifying constants/uniforms

 Pixel Centers

— OpenGL matches D3D10+

MakeCurrent issues

 Responsible for several bugs on TF2

 Font rendering glitches (the thread creating text tries to

update the texture page, but didn’t own the context

MakeCurrent Performance

 Single-threaded is best here.

 MakeCurrent is very

expensive—try not to

call even once/twice

per frame.

MakeCurrent – Fixed

Driver Serialization

 Modern OpenGL drivers are dual-core / multithreaded

— Your application speaks to a thin shim

— The shim moves data over to another thread to prepare for

submission

— Similar to D3D

 Issuing certain calls causes the shim to need to flush all

work, then synchronize with the server thread.

 This is very expensive

Known naughty functions

 glGet(…) – Most of these cause serialization; shadow state

(just like D3D)

 glGetError - use ARB_debug_output!

 Functions that return a value

 Functions that copy a non-determinable amount of client

memory, or determining the memory would be very hard

Detecting Driver Serialization

 ARB_debug_output to the rescue!

 Place a breakpoint in your callback, look up the callstack to

see which call is causing the problem

 Message in ARB_debug_output to look for: “Performance

warning: synchronous call is forcing a worker thread stall”

Device (Context) Creation in GL

 Creating a simple context in GL is easy:

— Create a Window

— Create a Context

 Whether this gets you a Core or Compatibility context is

unspecified , but most vendors give you Compatibility.

 Creating a “robust” context with a specific GL-support

version requires using a WGL/GLX extension, and is trickier:

Context Creation – Cont’d

1. Create a window (don’t show)

2. Create a context

3. Query for window-specific extensions

4. Create another window (this will be the application window)

5. Create a context using extension function from step 3.

6. Destroy Context from step 2.

7. Destroy window from step 1.

 Yuck.

 With SDL, SDL_GL_SetAttribute + SDL_CreateWindow.

Common D3D Idioms in GL

 Vertex Attributes

 Vertex Buffers

 Textures

 Render to texture

 Shaders

Vertex Attributes

glBindBuffer(GL_ARRAY_BUFFER, mPositions);
// glVertexAttribPointer remembers mPositions
glVertexAttribPointer(mProgram_v4Pos, 4, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v4Pos);

glBindBuffer(GL_ARRAY_BUFFER, mNormals);
// glVertexAttribPointer remembers mNormals
glVertexAttribPointer(mProgram_v3Normal, 3, GL_FLOAT,
 GL_FALSE, 0, 0);
glEnableVertexAttribArray(mProgram_v3Normal);

Vertex Attribs – Alternative #1

 Vertex Attribute Objects (VAOs)

 Good mapping for D3D (seductive!)

 Slower than glVertexAttribPointer on all implementations

 Recommendation: Skip it

ARB_vertex_attrib_binding

 Separates Format from Binding

 Code is easy to read

glVertexAttribFormat(0, 4, GL_FLOAT, FALSE, 0);
glVertexAttribBinding(0, 0);
glBindVertexBuffer(0, buffer0, 0, 24);
 http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

http://www.opengl.org/registry/specs/ARB/vertex_attrib_binding.txt

Vertex (and Index) Buffer Creation

GLuint vb = 0, ib = 0;
glGenBuffers(1, &vb);
glNamedBufferDataEXT(vb, vbLengthBytes, vbPtr, vbUsage);

glGenBuffers(1, &ib);
glNamedBufferDataEXT(ib, ibLengthBytes, ibPtr, ibUsage);

Vertex (and Index) Buffer Updates

// NO_OVERWRITE is implied if you specify non-overlapping
// regions.
glNamedBufferSubDataEXT(vb, vbOffset, vbLength, vbPtr);
glNamedBufferSubDataEXT(ib, ibOffset, ibLength, ibPtr);

// DISCARD.
glNamedBufferDataEXT(vb, vbLength, vbPtr, vbUsage);
glNamedBufferDataEXT(ib, ibLength, ibPtr, ibUsage);

Vertex (and Index) Buffer Using

// Binding VBs also involves setting up VB attributes.
glBindBuffer(GL_ARRAY_BUFFER, vb);
glVertexAttribPointer(mProgram_pos, 3, GL_FLOAT, GL_FALSE, 24, 0);
glVertexAttribPointer(mProgram_n, 3, GL_FLOAT, GL_FALSE, 24, 12);
glEnableVertexAttribArray(mProgram_pos);
glEnableVertexAttribArray(mProgram_n);

// We finally know what the type is!
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ib);

Dynamic Buffer Updates

 Don’t use MapBuffer—because it returns a pointer, it causes

driver serialization.

 Even worse, it probably causes a CPU-GPU sync point.

 Instead, use BufferSubData on subsequent regions, then

BufferData when it’s time to discard.

Render to Texture

 Render-to-texture in GL utilizes Frame Buffer Objects

(FBOs)

 FBOs are created like other objects, and have attachment

points. Many color points, one depth, one stencil, one

depth-stencil

 FBOs must be “framebuffer complete” to be rendered to.

 FBOs, like other “container objects,” are not shared

between contexts.
 http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

Frame Buffers

 Spec has fantastic examples for creation, updating, etc, so

not replicating here

 Watch BindRenderTarget (and BindDepthStencil) etc calls

 At draw time, check whether render targets are in an

existing FBO configuration (exactly) via hash lookup

 If so, use it.

 If not, create a new FBO, bind attachments, check for

completeness and store in cache.

Frame Buffers – Don’ts

 Do not create a single FBO and then swap out attachments

on it.

 This causes lots of validation in the driver, which in turn

leads to poor performance.

Shaders/Programs

 In GL, Shaders are attached to a Program.

— Each Shader covers a single shader stage (VS, PS, etc)

 Shaders are Compiled

 Programs are Linked

 The Program is “used”

 This clearly doesn’t map particularly well to D3D, which

supports mix-and-match.

Shaders/Programs cont’d

 GL Uniforms == D3D Constants

 Uniforms are part of program state

— Swapping out programs also swaps uniforms

— This also maps poorly to D3D.

Uniform problem

 To solve the uniform problem, consider uniform buffer

objects

— Create a single buffer, bind to all programs

— Modify parameters in the buffer

 Or, keep track of “global” uniform state and set values just

prior to draw time

 If you’re coming from D3D11, Uniform Buffers ARE Constant

Buffers—no problems there.
 http://www.opengl.org/wiki/Uniform_Buffer_Object

 http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

http://www.opengl.org/wiki/Uniform_Buffer_Object
http://www.opengl.org/registry/specs/ARB/uniform_buffer_object.txt

Shader Approach #1: Program Hash

 Pay attention to shaders that get set.

 At draw time, hash the names of the shaders to see if an

existing program object has been linked

 Otherwise, link and store in the hash

Shader Translation

 You have a pile of HLSL. You need to give GL GLSL.

— ARB_vertex_program / ARB_fragment_program is a possible

alternative, but only for DX9.

 No *_tessellation_program

Shader Translation cont’d

 One approach: compile HLSL, translate the byte code to

simple GLSL asm-like.

 Pro: One set of shaders goes public

 Pro: Can be fast

 Con: Can be hard to debug problems

 Con: Potentially slow fxc idioms end up in generated GLSL

 Con: Debugging requires heavy cognitive load

Other Translation Approaches

 Open Source Alternatives

— HLSLCrossCompiler – D3D11 only (SM4/5)

— MojoShader – SM1/2/3

 Shipped in several games and engines, including Unreal Tournament 3, Unity.

 https://github.com/James-Jones/HLSLCrossCompiler

 http://icculus.org/mojoshader/

https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
https://github.com/James-Jones/HLSLCrossCompiler
http://icculus.org/mojoshader/

Performance tips

 Profile

 Profile

 Profile

Performance tips – cont’d

 For best performance, you will have to write vendor-

specific code in some cases.

 But you were probably doing this anyways

 And now behavior is specified in a public specification.

GL Debugging and Perf Tools

 NVIDIA Nsight supports GL 4.2 Core.

— With some specific extensions

— More extensions / features coming!

 PerfStudio and gDEBugger

 CodeXL

 Apitrace

— Open Source api tracing tool—has scaling issues which Valve is

working to fix.

GL Debugging Tricks

 Compare D3D to GL images

 Keep them both

working on the

same platform

 Bonus points:

Have the game

running on two machines,

broadcast inputs to both,

compare images in

realtime.

Questions?

 jmcdonald at nvidia dot com

 richg at valvesoftware dot com

Appendix

 Some other GL gotchas/helpers

Magic Symbol Resolution

 Linux equivalent of _NT_SYMBOL_PATH

 In ~/.gdbinit:

— set debug-file-directory /usr/lib/debug:/mnt/symstore/debug

 /mnt/symstore/debug is a shared, remotely mounted share with your

symbols

 Populate that server with symbols

 Currently only applied to gdb, should also apply to Google’s perf tool

“soon”

http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/

http://fedoraproject.org/wiki/Releases/FeatureBuildId

http://randomascii.wordpress.com/category/symbols-2/

http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://randomascii.wordpress.com/2013/02/20/symbols-on-linux-part-three-linux-versus-windows/
http://fedoraproject.org/wiki/Releases/FeatureBuildId
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/
http://randomascii.wordpress.com/category/symbols-2/

Performance tips

 Force-inline is your friend—many of the functions you’ll be

implementing are among the most-called functions in the

application.

 With few exceptions, you can maintain a GL:D3D call ratio

of 1:1 or less.

— For example, use glBindMultiTextureEXT instead of

glActiveTexture/glBindTexture.

— glBindMultiTextureEXT(texUnit, target, texture)

Other useful GL references

 http://www.opengl.org/wiki/Common_Mistakes

 OpenGL SuperBible: Comprehensive Tutorial and Reference (5th Edition)

— http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/

 OpenGL 4.2 Quick Reference Card

— http://www.khronos.org/files/opengl42-quick-reference-card.pdf

http://www.opengl.org/wiki/Common_Mistakes
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.amazon.com/OpenGL-SuperBible-Comprehensive-Tutorial-Reference/dp/0321712617/
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf
http://www.khronos.org/files/opengl42-quick-reference-card.pdf

Sampler gotchas…

 On certain drivers, GL_TEXTURE_COMPARE_MODE (for

shadow map lookups) is buggy when set via sampler.

 For robustness, use texture setting on those particular

drivers.

Latched State

 Recall that GL is very stateful.

 State set by an earlier call is often captured (latched) by a

later call.

 Vertex Attributes are the prime example of this, but there

are numerous other examples.

Textures (Creation)

GLuint texId = 0;
// Says “This handle is a texture”
glGenTextures(1, &texId);

// Allocates memory
glTextureStorage2DEXT(texId, GL_TEXTURE_2D, mipCount,
 texFmt, mip0Width, mip0Height);

// Pushes data—note that conversion is performed if necessary
foreach (mipLevel) {
 glTextureSubImage2DEXT(texId, GL_TEXTURE_2D, mipLevel,
 0, 0, mipWidth, mipHeight,
 srcFmt, srcType, mipData);
}

Textures (Updating)

 With TexStorage, updates are just like initial data

specification (glTextureSubImage or

glCompressedTextureSubImage).

 Texture->Texture updates are covered later

 On-GPU compression is straightforward, implemented in
https://code.google.com/p/nvidia-texture-tools/

— MIT License, use freely!

 Or copy Simon Green’s technique:
— http://developer.download.nvidia.com/SDK/10/opengl/samples.html#compress_YCoCgDXT

https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
https://code.google.com/p/nvidia-texture-tools/
http://developer.download.nvidia.com/SDK/10/opengl/samples.html
http://developer.download.nvidia.com/SDK/10/opengl/samples.html

Textures (Setting State)

// Sets minification filtering on texture 7
// This parameter will be ignored if a sampler is bound.
glTextureParameteri(7, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

Textures (Using)

// Binds texture 7 to texture unit 3.
glBindMultiTextureEXT(3, GL_TEXTURE_2D, 7);

StretchRect

 Implementing StretchRect in GL involves using Read/Write

FBOs.

 Bind source as a read target

 Bind destination as a write target

 Draw!

 Alternatives:

— No stretching/format conversion? EXT_copy_texture

— Stretching / format conversion? NV_draw_texture

StretchRect – MSAA case

 When MSAA is involved, use

EXT_framebuffer_multisample_blit_scaled

 Allows resolving and resizing in a single blit

 Otherwise two blits needed (one for resolve, one for resize)

Other GL/D3D differences

 Clip Space

— D3D:

 -w <= x <= w

 -w <= y <= w

 0 <= z <= w

— GL

 -w <= x <= w

 -w <= y <= w

 -w <= z <= w

— But anything with w < 0 still clipped by W=0 clipping

 Latched State – let’s get back to this.

